Ядерный Университет «мифи» icon

Ядерный Университет «мифи»





Скачать 310.92 Kb.
НазваниеЯдерный Университет «мифи»
Степаненко Виктория
Дата конвертации05.02.2013
Размер310.92 Kb.
ТипДоклад
Национальный Исследовательский Ядерный Университет «МИФИ»


Доклад по теме:

«Ядерный магнитный резонанс или магнитно-резонансная томография»


Преподаватель: Самедов В.В.

Работу выполнила: Степаненко Виктория

У 04-03


Москва 2011

Оглавление


Введение 2

Основоположники ядерного магнитного резонанса 3

Физика ядерного магнитного резонанса 5

Применение ЯМР 8

Нобелевские премии за вклад в развитие ЯМР 11

История магнитно-резонансной томографии 12

Метод МРТ 13

МР диффузия 14

Диффузная спектральная томография: 14

МР перфузия 15

МР спектроскопия 15

МР – ангиография 15

Преимущества магнитно-резонансной томографии (МРТ) перед другими методами 20

Показания к магнитно-резонансной томографии (МРТ) 23

Противопоказания к магнитно - резонансной томографии (МРТ) 23

Как проводится магнитно-резонансная томография (МРТ) 24

Безопасность метода МРТ 26

Используемая литература 26



Введение


Ядерный магнитный резонанс (ЯМР), резонансное поглощение электромагнитной энергии веществом, обусловленное переориентацией магнитных моментов атомных ядер. ЯМР — один из методов радиоспектроскопии. Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

Магнитно-резонансная томография (МРТ) — томографический метод исследования внутренних органов и тканей с использованием физического явления ядерного магнитного резонанса — метод основан на измерении электромагнитного отклика ядер атомов водорода на возбуждение их определённой комбинацией электромагнитных волн в постоянном магнитном поле высокой напряжённости.


^

Основоположники ядерного магнитного резонанса


Явление магнитного резонанса было открыто в 1945—1946 гг. двумя независимыми группами ученых. Вдохновителями этого были Ф. Блох и Э. Пёрселл.


^ Феликс Блох

Феликс Блох — швейцарский физик еврейского происхождения, работавший главным образом в США. Лауреат Нобелевской премии по физике за 1952 год. felix_bloch,_stanford_university.jpg


^ Выдающийся учёный-физик, лаВыдающийся учёный-физик, лауреат Нобелевской премии по физике
Ф. Блох родился в Цюрихе (Швейцария). Высшее образование получил в высшей технической школе Цюриха. Поступал на инженерное отделение, но вскоре перешел на физическое. Получив диплом в 1927 г. он продолжил обучение в Лейпцигском университете, получив докторскую степень (эквивалентна кандидату физ.-мат. наук) в 1928 г. Затем он продолжил заниматься наукой в Германии, вместе с Гейзенбергом, Паули, Бором и Ферми. В 1933 г. он покинул Германию, эмигрировав в США чтобы начать в 1934 г. работу в Стэнфордском университете. В 1939 г. он стал натурализованным гражданином США. Во время второй мировой войны он работал над атомным проектом в национальной лаборатории Лос-Аламоса, но впоследствии перешел в радарный проект в Гарвардском университете. После войны он сконцентрировался над работами в области ядерной индукции и ядерного магнитного резонанса — основополагающими принципами ядерной магнитной томографии. В 1952 г совместно с Э. М. Пёрселлом он был удостоен Нобелевской премии по физике «за развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия». В 1954—1955 годах он был первым генеральным директором ЦЕРНа. В 1961 г. он стал профессором физики в Стэнфордском университете.


^ Эдвард Миллс Пёрселл


Эдвард Миллс Пёрселл - американский физик, лауреат Нобелевской премии по физике в 1952 г. (совместно с Феликсом Блохом) «за развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия».edward_purcell.jpg


^ Эдвард Миллс Пёрселл, лауреат Нобелевской премии по физике
Пёрселл получил степень бакалавра по электрическому инженерному делу в университете Пердью. Степени магистра и доктора по физике он получил в Гарвардском университете. Во время Второй мировой войны работал в МТИ в лаборатории излучений над развитием СВЧ радара. После войны Пёрселл возвращается в Гарвард. В 1945 г. он, вместе со своими коллегами Паундом и Торри, открывает явление ядерного магнитного резонанса. ЯМР дал учёным элегантный и точный метод определения химической структуры и свойств материалов и широко используется в настоящее время в физике и химии. Он также является основой метода ЯМР-изображений — одного из наиболее важных достижений в медицине XX-го века. За открытие ЯМР Пёрселл и Блох были удостоены Нобелевской премии.

Пёрселл также внёс вклад в астрономию — он впервые зарегистрировал радиоизлучение нейтрального водорода в космосе (излучение с длиной волны 21-см), при помощи которого удалось впервые взглянуть на спиральные рукава Млечного пути. Этот метод до сих пор является одним из самых важных в радиоастрономии. Кроме того он внёс значительный вклад в физику твёрдого тела — изучением релаксации спинового эха, релаксации ядерного магнитного момента, отрицательной спиновой температуры. Совместно с Норманом Рамзеем он был первым, кто поставил под сомнение правильность CP-симметрии в физике элементарных частиц.

Пёрселл получил много наград за свою научную, образовательную и гражданскую работу. Он был научным советником президентов Дуайта Эйзенхауэра, Джона Кеннеди и Линдона Джонсона. Пёрселл был президентом Американского физического общества, членом Американского философского общества, членом академии наук США, членом Американской академии наук и искусств. В 1979 г. Пёрселл был награждён национальной медалью науки (США).

С развитием квантовой оптики и нанотехнологий имя Пёрселла часто упоминается с таким понятием как Пёрселл-фактор, который характеризует связь излучателя с определенной модой пространства.
^

Физика ядерного магнитного резонанса


В основе явления ядерного магнитного резонанса лежат магнитные свойства атомных ядер, состоящих из нуклонов с полуцелым спином 1/2, 3/2, 5/2…. Ядра с чётными массовым и зарядовым числами (чётно-чётные ядра) не обладают магнитным моментом, в то время как для всех прочих ядер магнитный момент отличен от нуля.

Таким образом, ядра обладают угловым моментом 8b2e4ff5f1e08277c522713ffaa93e55.png связанным с магнитным моментом µ соотношением 8356379ab3e63f6d9242a519ea1e4461.png, где 9dfd055ef1683b053f1b5bf9ed6dbbb4.png — постоянная Планка, 1632c65229510dfecafe7f281061a8f8.png — спиновое квантовое число, 05cfc61fc46479d33107790d51dec9f2.png — гиромагнитное отношение. Гиромагни́тное отноше́ние (магнитомехани́ческое отноше́ние) — отношение дипольного магнитного момента элементарной частицы (или системы элементарных частиц) к её механическому моменту.

Угловой момент и магнитный момент ядра квантованы, и собственные значения проекции и углового и магнитного моментов на ось z произвольно выбранной системы координат определяются соотношением 2bddf09c66358ca1083dfcf73cec0b04.png и 8fb91138dae880927941d990809c01b9.png , где fb2e7b57060c920c04bc9d861733b460.png — магнитное квантовое число собственного состояния ядра, его значения определяются спиновым квантовым числом ядра54776bef74e746ed0350dd512696ad0c.png то есть ядро может находиться в62e993448d4dc32e806091f96bab80bc.png состояниях. Так, у протона (или другого ядра с безымянный.jpg может находиться только в двух состояниях 6e626cfccfe5f1550ef0743f23c208b4.png такое ядро можно представить как магнитный диполь, z-компонента которого может быть ориентирована параллельно либо антипараллельно положительному направлению оси z произвольной системы координат. 300px-epr_splitting.jpg


^ Расщепление энергетических уровней ядра с I = 1/2 в магнитном поле
Следует отметить, что в отсутствие внешнего магнитного поля все состояния с различными edcd4b2c581d6121585a0a33d7297d66.png имеют одинаковую энергию, то есть являются вырожденными. Вырождение снимается во внешнем магнитном поле, при этом расщепление относительно вырожденного состояния пропорционально величине внешнего магнитного поля и магнитного момента состояния и для ядра со спиновым квантовым числом I во внешнем магнитном поле появляется система из 2I+1 энергетических уровней3f717a3529ff9e14cdca9a7159181899.png

то есть ядерный магнитный резонанс имеет ту же природу, что и эффект Зеемана расщепления электронных уровней в магнитном поле. В простейшем случае для ядра со спином с I = 1/2 — например, для протона, расщепление 3d1bc4ac6023b9b04e9ee7b6a1242bca.png и разность энергии спиновых состоянийb850668617503f732728be0ae9b5ac64.png.


^ Ларморовская прецессия

Эксперименты, в которых прослеживается отклик атомов на магнитное поле, дают ключевую информацию об атомной механике. Ларморовская прецессия атомов и других частиц в магнитном поле состоит в том, что средний магнитный момент атомов периодически изменяет направление. Описание этого изменения служит прототипом описания нестационарных состояний атомных систем. Изучая нестационарные состояния, мы прослеживаем развитие атомных явлений во времени, тогда как при изучении стационарных состояний мы сосредотачиваемся на свойствах, остающихся неизменными.

Механическим аналогом Ларморовской прецессии служит вращающийся волчок.

ymr_p01.gif

^ Прецессия вращающегося волчка. J – момент импульса, Р – сила тяжести, R – реакция опоры, М – вращающий момент.

Действие вращающего момента, например на атом газа, приводит к гироскопическому эффекту, при котором инерция атома проявляется как момент импульса. Иными словами, воздействие внешнего постоянного магнитного поля B на атомный контур с током аналогично воздействию силы тяжести на вращающийся волчок и описывается аналогичным уравнением. Вращающий момент М волчка стремится опустить его центр масс, поворачивая ось вращения относительно точки опоры. В случае атома с кольцевым током вращающий момент М, определяемый равенством M = [μ·B], стремится повернуть атом вокруг его центра масс. В обоих случаях воздействие вращающего момента изменяет момент импульса J, обусловленный вращением волчка или циркуляцией носителей тока в атоме. Уравнение движения имеет вид:

M = dJ/dt.

Векторная добавка dJ/dt к мгновенному значению момента импульса J вызывает прецессию его направления относительно оси, вертикальной в случае волчка и параллельной вектору индукции внешнего магнитного поля B в случае атома. В ходе прецессии угол между J и осью прецессии остается постоянным. Угловая скорость прецессии обычно описывается вектором ω, параллельным этой оси:

dJ/dt = [ω·J].

Таким образом, мы видим, что атомы могут прецессировать вокруг направления приложенного внешнего магнитного поля.


^ Ларморовские частоты некоторых атомных ядер

безымянный.jpg

Частота для резонанса протонов находится в диапазоне коротких волн (длина волн около 7 м)


Методика измерения

Магнитный резонанс наблюдается по изменению магнитного момента M образца вещества, помещенного во внешнее поле. Вектор M равен сумме средних моментов <μ> всех атомных систем, составляющих данный образец, обычно наблюдаемые изменения вектора M обусловлены прецессией моментов <μ> отдельных составляющих, например ядер атомов водорода.

Средний магнитный момент <μ> атомной системы, возникающий в результате парамагнитной ориентации, обычно параллелен локальному полю , которое мы считаем постоянным. Следовательно, если момент <μ> не отклоняется от направления B0 каким-либо возмущающим полем, то он не прецессирует вокруг. При отклонении момента <μ> возникает прецессия с частотой γ, гиромагнитное отношение γ предполагается известным из других экспериментов. Отклонение <μ> происходит при наложении переменного поперечного поля напряженности B1cos ωt, если ω совпадает с частотой прецессии γ. Такое совпадение частот и обеспечивает возникновение магнитного резонанса. Появление прецессии наблюдается чаще всего по поглощению энергии переменного поперечного поля. Эксперименты по магнитному резонансу позволяют найти распределение поля в веществе в местах расположения токов, для которых наблюдается этот резонанс. Например, в типичном эксперименте по обнаружению резонанса спиновых токов в органических веществах определяются напряженности магнитного поля в местах нахождения различных атомов водорода. Если напряженности, поля в разных точках образца одинаковы, резонанс наблюдается на одной частоте, которая равна ω при = B0 и отличается от нее на постоянную величину в противном случае. Изменение величины внутреннего поля от точки к точке приводит к возникновению резонанса на разных частотах.
^

Применение ЯМР


Спектроскопия

Спектроскопи́я я́дерного магни́тного резона́нса, ЯМР-спектроскопия — спектроскопический метод исследования химических объектов, использующий явление ядерного магнитного резонанса. Наиболее важными для химии и практических применений являются спектроскопия протонного магнитного резонанса (ПМР-спектроскопия), а также спектроскопия ЯМР на ядрах углерода-13 (13C ЯМР-спектроскопия), фтора-19 (19F ЯМР-спектроскопия(, фосфора-31 (31P ЯМР-спектроскопия). Подобно инфракрасной спектроскопии, ЯМР выявляет информацию о молекулярном строении химических веществ. Однако, он обеспечивает более полную информацию, чем ИС, позволяя изучать динамические процессы в образце — определять константы скорости химических реакций, величину энергетических барьеров внутримолекулярного вращения. Эти особенности делают ЯМР-спектроскопию удобным средством как в теоретической органической химии, так и для анализа биологических объектов.

^ Базовая ЯМР техникаhwb-nmr_-_900mhz_-_21.2_tesla.jpg


ЯМР-спектрометр с рабочей частотой 900 МГц и индукцией магнитного поля 21.2 T в HWB-NMR, Бирмингем, Великобритания
ЯМР образец помещается в тонкостенную стеклянную трубку. Когда ее помещают в магнитное поле, ЯМР активные ядра (такие как 1H или 13C) поглощают электромагнитную энергию. Резонансная частота, энергия абсорбции и интенсивность испущенного сигнала пропорциональны силе магнитного поля. Так в поле в 21 Тесла, протон резонирует при частоте 900 МГц


Приборы

Сердцем спектрометра ЯМР является мощный магнит. В эксперименте, впервые осуществленном на практике Пёрселлом, образец, помещенный в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем, для улучшения однородности магнитного поля, ампула начинает вращаться, а магнитное поле, действующее на нее, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности. Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте чуть меньшей, чем ядра, лишенные электронных оболочек. Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его еще называют методом непрерывного облучения (CW, continous wave).

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованиях полученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

В отличие от CW-метода, в импульсном варианте возбуждение ядер осуществляют не «постоянной волной», а с помощью короткого импульса, продолжительностью несколько микросекунд. Амплитуды частотных компонент импульса уменьшаются с увеличением расстояния от ν0. Но так как желательно, чтобы все ядра облучались одинаково, необходимо использовать «жесткие импульсы», то есть короткие импульсы большой мощности. Продолжительность импульса выбирают так, чтобы ширина частотной полосы была больше ширины спектра на один-два порядка. Мощность достигает нескольких тысяч ватт.

В результате импульсной спектроскопии получают не обычный спектр с видимыми пиками резонанса, а изображение затухающих резонансных колебаний, в котором смешаны все сигналы от всех резонирующих ядер — так называемый «спад свободной индукции» (FID, free induction decay). Для преобразования данного спектра используют математические методы, так называемое фурье-преобразование, по которому любая функция может быть представлена в виде суммы множества гармонических колебаний.


^ Спектры ЯМР

Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

  • сигналы ядер атомов, входящих в определенные функциональные группы, лежат в строго определенных участках спектра;

  • интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;

  • ядра, лежащие через 1-4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

300px-4-ethoxybenzaldehyde.nmr.pngc:\users\вика\desktop\безымянный.jpg


Интроскопия

Явление ядерного магнитного резонанса можно применять не только в физике и химии, но и в медицине: организм человека — это совокупность все тех же органических и неорганических молекул.

Чтобы наблюдать это явление, объект помещают в постоянное магнитное поле и подвергают действию радиочастотных и градиентных магнитных полей. В катушке индуктивности, окружающей исследуемый объект, возникает переменная электродвижущая сила (ЭДС), амплитудно-частотный спектр которой и переходные во времени характеристики несут информацию о пространственной плотности резонирующих атомных ядер, а также о других параметрах, специфических только для ядерного магнитного резонанса. Компьютерная обработка этой информации формирует объёмное изображение, которое характеризует плотность химически эквивалентных ядер, времена релаксации ядерного магнитного резонанса, распределение скоростей потока жидкости, диффузию молекул и биохимические процессы обмена веществ в живых тканях.

Сущность ЯМР-интроскопии (или магнитно-резонансной томографии) состоит, по сути дела, в реализации особого рода количественного анализа по амплитуде сигнала ядерного магнитного резонанса. В обычной ЯМР-спектроскопии стремятся реализовать, по возможности, наилучшее разрешение спектральных линий. Для этого магнитные системы регулируются таким образом, чтобы в пределах образца создать как можно лучшую однородность поля. В методах ЯМР-интроскопии, напротив, магнитное поле создается заведомо неоднородным. Тогда есть основание ожидать, что частота ядерного магнитного резонанса в каждой точке образца имеет свое собственное значение, отличающееся от значений в других частях. Задав какой-либо код для градаций амплитуды ЯМР-сигналов (яркость или цвет на экране монитора), можно получить условное изображение (томограмму) срезов внутренней структуры объекта.

ЯМР-интроскопия, ЯМР-томография впервые в мире изобретены в 1960 г. В. А. Ивановым.
^

Нобелевские премии за вклад в развитие ЯМР


Нобелевская премия по физике за 1952 г. была присуждена Феликсу Блоху и Эдварду Миллс Пёрселлу «За развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия».

Нобелевская премия по химии за 1991 г. была присуждена Ричарду Эрнсту «За вклад в развитие методологии ядерной магнитной резонансной спектроскопии высокого разрешения».

Нобелевская премия по химии за 2002 г. (1/2 часть) была присуждена Курту Вютриху «За разработку применения ЯМР-спектроскопии для определения трехмерной структуры биологических макромолекул в растворе».

Нобелевская премия по физиологии и медицине за 2003 г. была присуждена Полу Лотербуру, Питеру Мэнсфилду «За изобретение метода магнитно-резонансной томографии».


^

История магнитно-резонансной томографии


Годом основания магнитно-резонансной томографии принято считать 1973, когда профессор химии Пол Лотербур опубликовал в журнале Nature статью «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса». Позже Питер Мэнсфилд усовершенствовал математические алгоритмы получения изображения.

В действительности же ЯМР-томографию (МРТ) изобрёл в 1960 г. В. А. Иванов (и способ, и устройство), что удостоверено патентом СССР с такой датой приоритета.

Некоторое время существовал термин ЯМР-томография, который был заменён на МРТ в 1986 году в связи с развитием радиофобии у людей после Чернобыльской аварии. В новом термине исчезло упоминание на «ядерность» происхождения метода, что и позволило ему достаточно безболезненно войти в повседневную медицинскую практику, однако и первоначальное название также имеет хождение.

За изобретение метода МРТ в 2003 Питер Мэнсфилд и Пол Лотербур получили Нобелевскую премию в области медицины. В создание магнитно-резонансной томографии известный вклад внёс также Реймонд Дамадьян, один из первых исследователей принципов МРТ, держатель патента на МРТ и создатель первого коммерческого МРТ-сканера.

Томография позволяет визуализировать с высоким качеством головной, спинной мозг и другие внутренние органы. Современные методики МРТ делают возможным неинвазивно (без вмешательства) исследовать функцию органов — измерять скорость кровотока, тока спинномозговой жидкости, определять уровень диффузии в тканях, видеть активацию коры головного мозга при функционировании органов, за которые отвечает данный участок коры (функциональная МРТ).
^








Метод МРТ


Метод ядерного магнитного резонанса позволяет изучать организм человека на основе насыщенности тканей организма водородом и особенностей их магнитных свойств, связанных с нахождением в окружении разных атомов и молекул. Ядро водорода состоит из одного протона, который имеет магнитный момент (спин) и меняет свою пространственную ориентацию в мощном магнитном поле, а также при воздействии дополнительных полей, называемых градиентными, и внешних радиочастотных импульсов, подаваемых на специфической для протона при данном магнитном поле резонансной частоте. На основе параметров протона (спинов) и их векторном направлении, которые могут находиться только в двух противоположных фазах, а также их привязанности к магнитному моменту протона можно установить, в каких именно тканях находится тот или иной атом водорода.

Если поместить протон во внешнее магнитное поле, то его магнитный момент будет либо сонаправлен, либо противоположно направлен магнитному моменту поля, причём во втором случае его энергия будет выше. При воздействии на исследуемую область электромагнитным излучением определённой частоты, часть протонов поменяют свой магнитный момент на противоположный, а потом вернутся в исходное положение. При этом системой сбора данных томографа регистрируется выделение энергии во время «расслабления», или релаксации предварительно возбужденных протонов.

Первые томографы имели индукцию магнитного поля 0,005 Т, однако качество изображений, полученных на них, было низким. Современные томографы имеют мощные источники сильного магнитного поля. В качестве таких источников применяются как электромагниты (до 9,4 T), так и постоянные магниты (до 0,7 T). При этом, так как поле должно быть весьма сильным, применяются сверхпроводящиие электромагниты, работающие в жидком гелии, а постоянные магниты пригодны только очень мощные, неодимовые. Магнитно-резонансный «отклик» тканей в МР-томографах на постоянных магнитах слабее, чем у электромагнитных, поэтому область применения постоянных магнитов ограничена. Однако, постоянные магниты могут быть так называемой «открытой» конфигурации, что позволяет проводить исследования в движении, в положении стоя, а также осуществлять доступ врачей к пациенту во время исследования и проведение манипуляций (диагностических, лечебных) под контролем МРТ — так называемая интервенционная МРТ.

Для определения расположения сигнала в пространстве, помимо постоянного магнита в МР-томографе, которым может быть электромагнит, либо постоянный магнит, используются градиентные катушки, добавляющие к общему однородному магнитному полю градиентное магнитное возмущение. Это обеспечивает локализацию сигнала ядерного магнитного резонанса и точное соотношение исследуемой области и полученных данных. Действие градиента, обеспечивающего выбор среза, обеспечивает селективное возбуждение протонов именно в нужной области. Мощность и скорость действия градиентных усилителей относится к одним из наиболее важных показателей магнитно-резонансного томографа. От них во многом зависит быстродействие, разрешающая способность и соотношение сигнал/шум.
^

МР диффузия


МР диффузия — метод, позволяющий определять движение внутриклеточных молекул воды в тканях.

Диффузная спектральная томография:


Диффузная спектральная томография — метод, основанный на магнитно-резонансной томографии, позволяющий изучать активные нейронные связи. Преимущественное применение при диагностике острого нарушения мозгового кровообращения, по ишемическому типу, в острейшей и острой стадиях.

Диффузионная тензорная визуализация (ДТВ) - методика магнитно-резонансной томографии, позволяющая оценить диффузию молекул воды вдоль миелиновой оболочки аксонов нервных клеток головного мозга и, таким образом, получить информацию об интеграции структур белого вещества и связях между ними. С помощью методики ДТВ можно создать трехмерную нейронную модель головного мозга. Трехмерная волоконная трактография, представляет собой новую перспективную методику, позволяющую визуализировать пучки нервных волокон, соединяющие различные зоны мозга, связи между аксонами белого вещества головного мозга. МР-трактография позволяет более точно локализовать поражения функционально значимых проводящих путей и улучшить качество диагностики множества врожденных заболеваний. ДТИ также улучшает оценку гипоксическо-ишемического поражения развивающегося головного мозга новорожденных и детей младшей возрастной группы.
^


МР перфузия


Метод позволяющий оценить прохождение крови через ткани организма. В частности:

  • Прохождение крови через ткани мозга Прохождение крови через ткани печени

  • Метод позволяет определить степень ишемии головного мозга и других органов.



^

МР спектроскопия


Магнитно резонансная спектроскопия (МРС) — метод позволяющий определить биохимические изменения тканей при различных заболеваниях. МР — спектры отражают процессы метаболизма. Нарушения метаболизма возникают как правило до клинических проявлений заболевания, поэтому на основе данных МР спектроскопии — можно диагностировать заболевания на более ранних этапах развития.

Виды МР спектроскопии:

  • МР спектроскопия внутренних органов

  • МР спектроскопия биологических жидкостей
^

МР – ангиография


Магнитно-резонансная ангиография (МР - ангиография, МРА) — метод получения изображения кровеносных сосудов при помощи магнитно-резонансного томографа. Исследование проводится на томографах с напряжённостью магнитного поля не менее 1 Т. Метод позволяет оценивать как анатомические, так и функциональные особенности кровотока.


^ Суть метода

Под воздействием сильного магнитного поля спины протонов ядер водорода изменяют свое положение и располагаются вдоль оси магнитного поля. Воздействие магнитного поля и радиочастотного излучения на протоны не постоянно, с заданными силой, частотой и временем, а протоны после воздействия на них радиочастотного сигнала вновь возвращаются в исходное положение — так называемое «время релаксации» (T1 и T2). Воздействие магнитного поля и радиочастотного импульса на протоны ядер водорода заставляет их вращаться относительно новых осей в течение очень короткого периода времени, что сопровождается выделением и поглощением энергии, формированием своего магнитного поля. Регистрация этих энергетических изменений и является основой МРТ-изображения. Способность подобного смещения зависит от гидрофильности тканей, их химического состава и структуры. Она практически отсутствует в костной ткани и наибольшая в жидкостных структурах. Метод магнитно-резонансной ангиографии позволяет получать изображения сосудов без использования каких-либо рентгеноконтрастных средств, хотя для получения еще более четкого изображения применяются особые контрастные вещества на основе гадолиния.


^ Варианты МР - ангиографии

Времяпролетная ангиография — (Time of Flight, ToF)

При проведении времяпролетной ангиографии используется импульсная последовательность «градиентное эхо» с коротким TR (временем спин-релаксации). Срезы формируются перпендикулярно направлению тока крови. Высокий сигнал текущей крови — это результат втекания в срез спинов(векторов), не подавленных между радиочастотными (РЧ) возбуждениями. Подавленные неподвижные спины подвергаются неполной релаксации между РЧ-возбуждениями, давая меньший сигнал.

^ Фазово-контрастная ангиография (Phase-contrast, PC)

Фазоконтрастная ангиография позволяет визуально оценить скорость кровотока; сигнал содержит как амплитудную, так и фазовую информацию. Фазоконтрастная ангиография в 4 раза медленнее TOF.

4D-ангиография

Позволяет разделять артериальную и венозную фазы кровотока с визуализацией его динамики. Этот метод применяется для диагностики нарушений гемодиамики, таких как мальформации и фистулы. Время исследования значительно меньше в сравнении с другими методами МРА.


Применение

Магнитно-резонансная ангиография применяется для диагностики следующих заболеваний:

  • аневризма — локальное расширение стенки сосуда

  • расслоение аневризмы

  • врождённые пороки сердца

  • стеноз сосудов

  • воспаление сосудистой стенки (васкулит)

  • атеросклероз артерий



Противопоказания

Существуют как относительные противопоказания, при которых проведение исследования возможно при определённых условиях, так и абсолютные, при которых исследование недопустимо.

Абсолютные противопоказания

  • установленный кардиостимулятор (изменения магнитного поля могут имитировать сердечный ритм).

  • ферромагнитные или электронные имплантаты среднего уха.

  • большие металлические имплантаты, ферромагнитные осколки.

  • кровоостанавливающие клипсы сосудов головного мозга (риск развития внутримозгового или субарахноидального кровотечения).

Относительные противопоказания

  • инсулиновые насосы

  • нервные стимуляторы

  • неферромагнитные имплантаты внутреннего уха,

  • протезы клапанов сердца (в высоких полях, при подозрении на дисфункцию)

  • кровоостанавливающие клипсы (кроме сосудов мозга),

  • декомпенсированная сердечная недостаточность,

  • беременность (на данный момент собрано недостаточное количество доказательств отсутствия тератогенного эффекта магнитного поля)

  • клаустрофобия (панические приступы во время нахождения в тоннеле аппарата могут не позволить провести исследование)

  • необходимость в физиологическом мониторинге



^ Магнитно-резонансный томограф (МРТ)


Магнитно резонансный томограф (медицинский)
Магни́тно-резона́нсный томо́граф (МРТ), ядерно магнитно-резонансный томограф (ЯМРТ) или магнитно-резонансная томография (МРТ), является основным инструментом медицинской техники для создания изображений, используемых в радиологии для подробной визуализации внутренних структур и органов человека. Томограф обеспечивает хороший контраст между различными мягкими тканями тела, что делает его особенно полезным при исследованиях мозга, мышц, сердца и диагностики рака по сравнению с другими медицинскими методами визуализации, такими, как рентгеновская компьютерная томография (КТ) или рентгенография. В отличие от компьютерного томографа или традиционного рентгеновского аппарата в магнитно-резонансном томографе не используются ионизирующие излучения. Вместо этого он использует мощные магнитные поля, чтобы выровнять намагниченность некоторых атомов в теле, а затем использует радиочастотные поля чтобы систематически изменять направление этой намагниченности. Это приводит к появлению вращающегося магнитного поля, регистрируемого сканером и позволяет построить образ сканируемой области тела. Магнитно-резонансный томограф использует относительно новую технологию. Первые изображения томографов были опубликованы в 1973 году, а первый снимок поперечного сечения живой мыши — в январе 1974 года. Первые исследования, проведенные на людях были опубликованы в 1977 году. Для сравнения, первый рентгеновский снимок человека был сделан в 1895 году. magnit.jpg

1283342442airis_ii.jpg


^ Как работает томограф

Тело состоит в основном из молекул воды. Каждая молекула воды состоит из двух ядер водорода или протонов. Когда человек находится внутри мощного магнитного поля сканера, магнитные моменты некоторых из этих протонов изменяются и выравниваются по направлению прилагаемого поля. В томографе включается на небольшой промежуток времени радиочастотный генератор, создавая электромагнитное поле. Энергия фотонов этого поля, известная как резонансная частота, достаточная чтобы повернуть спины протонов в теле. По мере увеличения интенсивности и длительности поле увеличиваются количество повернувшихся спинов. После выключения поля, спины протонов возвращаются в первоначальное состояние, а разница в энергии между двумя состояниями высвобождается в виде фотона. Именно эти производящие электромагнитные сигналы фотоны обнаруживает сканер в томографе. Количество резонировавших протонов зависит от силы магнитного поля.

Связь между напряженностью приложенного поля и частотой позволяет использовать томограф ядерно-магнитного резонанса для работы с изображениями внутренних тканей человека. Для изменения позиции томографического среза внутри пациента применяются дополнительные магнитные поля, применяемые в ходе работы томографа. Информация о позиции может быть получена из результирующего сигнала с помощью преобразования Фурье. Эти поля создаются путем пропускания электрического тока через специальные соленоиды, известные как градиентные катушки. Поскольку эти катушки находятся внутри туннеля сканера, существуют большие силы взаимодействия между ними и основным полем, создавая большую часть шума во время работы. Если не ослаблять этот шум, он может доходить до 130 децибел (дБ) при сильных полях.

Изображение может быть построено, поскольку протоны в различных тканях возвращаются в свои равновесные состояния с различной скоростью, которая и является той разницей, которая может быть обнаружена и использована для построения изображения. Пять различных параметров – плотность спина, времена T1 и T2 релаксации, поток и спектральные сдвиги также используются для построения изображения. При изменении параметров сканера, этот эффект используется для создания контраста между различными типами тканей тела или между другими свойствами, как и в обычных, так и диффузионных магнитно-резонансных томографах.

Контрастные вещества могут быть введены внутривенно, чтобы улучшить визуализацию кровеносных сосудов, опухоли или воспаления. Контрастные агенты также могут быть непосредственно введены в сустав в случае артрограмм, при томографии суставов. В отличие от КТ, МРТ не использует ионизирующего излучения и, как правило, очень безопасная процедура. Тем не менее сильные магнитные поля и радиоимпульсы может повлиять на металлические имплантаты, в том числе кохлеарных имплантатов и кардиостимуляторов.
^

Преимущества магнитно-резонансной томографии (МРТ) перед другими методами


Магнитно-резонансная томография (МРТ) позволяет получить изображение практически всех тканей тела, поскольку имеется возможность изменять время действия потока радиоволн.

Ввиду того, что магнитно-резонансная томография дает очень детальное изображение, она считается лучшей техникой для выявления различных опухолей, исследования нарушений центральной нервной системы и

заболеваний опорно-двигательной системы. В результате магнитно-резонансной томографии (МРТ) получается полноценная, трехмерная картина исследуемой области тела. Благодаря магнитно-резонансной томографии (МРТ) появляется возможность, не используя контрастные вещества, тщательно обследовать многие органы и системы.mrt1.gif


Современные томографы позволяют мотодом сканирования получить томограммы в произвольно ориентированной плоскости без изменения положения пациента. При этом в МРТ-исследовании используются аналогичные КТ-принципы пространственного кодирования информации и обработки данных. За одно сканирование, например, головы, сбор данных обычно производится приблизительно с 20 уровней черепа и мозга с толщиной среза в 4—5 мм. Чем выше напряженность магнитного поля томографа, эта величина выражается в Теслах, тем тоньше эти срезы можно сделать, тем точнее будет исследование, тем вернее будет результат. Большинство клинических магнитно-резонансных томографов (МРТ) содержат 0,5-1.5 Тесла магниты и лишь немногие - 3Т. Более сильное магнитное поле может обеспечить более детальное обследование. Время сканирования зависит от поставленных задач и параметров магнитно-резонансного томографа и составляет в среднем от 2—7 мин (для магнитно-резонансной томографии МРТ головы) до 60 минут. В конечном итоге на экране дисплея появляются изображения срезов исследуемой ткани, например ткани мозга.

mrt.jpg

Метод магнитно-резонансной томографии МРТ создает возможность визуализировать на экране дисплея, а затем и на рентгеновской пленке срезы черепа и головного мозга, позвоночного столба и спинного мозга. Информация позволяет дифференцировать серое и белое вещество мозга, судить о состоянии его желудочковой системы, субарахноидального пространства, выявлять многие формы патологии, в частности объемные процессы в мозге, зоны демиелинизации, очаги воспаления и отека, гидроцефалию, травматические поражения, гематомы, абсцессы, очаги проявления нарушений мозгового кровообращения по ишемическому и геморрагическому типу, кстати, ишемические очаги в мозге могут быть выявлены в гиподенсивной форме уже через 2—4 ч после инсульта.

Немаловажным преимуществом магнитно-резонансной томографии МРТ перед КТ является возможность получения изображения в любой проекции: аксиальной, фронтальной, сагиттальной. Это позволяет визуализировать субтенториальное пространство, позвоночный канал, выявить невриному слухового нерва в полости внутреннего слухового прохода, опухоль гипофиза, субдуральную гематому в подостром периоде, даже в тех случаях, когда на КТ она не визуализируется.

Магнитно-резонансная томография (МРТ) стала основным методом выявления некоторых форм аномалий: аномалии мозолистого тела, аномалии Арнольда—Киари, очаги демиелинизации в паравентрикулярном и других отделах белого вещества мозга при рассеянном склерозе.

На магнитно-резонансной томографии (МРТ) раньше, чем на компьютерной томографии ( КТ), выявляются очаги ишемии мозга, при этом их можно выявить в стволе мозга, в мозжечке, в височной доле. На магнитно-резонансной томографии (МРТ) хорошо видны контузионные очаги, абсцессы мозга и зоны отека мозговой ткани.

Важная роль отводится магнитно-резонансной томографии (МРТ) при выяснении причин деменции. В то же время изменения мозговой ткани зачастую неспецифичны и подчас сложно дифференцировать, например, очаги ишемии и демиелинизации.

Ценная информация выявляется на MP-томограммах позвоночника, особенно на сагиттальных срезах. При этом визуализируются структурные проявления остеохондроза, в частности состояние позвонков и связочного аппарата, межпозвонковых дисков, их пролабирование и воздействие на твердую мозговую оболочку, спинной мозг, конский хвост, визуализируются также внутрипозвоночные новообразования, проявления гидромиелии, гематомиелии и многие другие патологические процессы.

Диагностический потенциал магнитно-резонансной томографии (МРТ) можно повысить предварительным введением некоторых контрастных веществ. В качестве вводимого в кровяное русло контрастного вещества обычно применяется элемент из группы редкоземельных металлов — гадолиний, обладающий свойствами парамагнетика, вводится внутривенно.

Преимущество магнитно-резонансной томографии (МРТ) перед компьютерной томографией (КТ) наиболее очевидно при исследовании тех отделов нервной системы, изображение которых нельзя получить с помощью КТ из-за перекрытия исследуемой мозговой ткани прилежащими костными структурами. Кроме того, при магнитно-резонансной томографии (МРТ) можно различать недоступные КТ изменения плотности ткани мозга, белое и серое вещество, выявлять поражение ткани мозга при рассеянном склерозе и пр.

При магнитно-резонансной томографии (МРТ) больной не подвергается ионизирующему облучению. Вместе с тем для применения магнитно-резонансной томографии (МРТ) есть некоторые ограничения. Так, магнитно-резонансная томография (МРТ) противопоказана при наличии в полости черепа металлических инородных тел, так как существует опасность их смещения под действием магнитного поля и, следовательно, дополнительного повреждения близлежащих структур головного мозга. Противопоказана магнитно-резонансная томография (МРТ) при наличии у больных наружного водителя ритма, беременности, выраженной клаустрофобии (боязни пребывания в тесном помещении). Осложняет применение МРТ-обследования его длительность (30—60 мин), в течении которого пациент должен находиться в неподвижном состоянии.

^

Показания к магнитно-резонансной томографии (МРТ)


Показания к магнитно-резонансной томографии (МРТ) и подготовку к исследованию смотрите в соответствующих разделах:

  • МРТ головного мозга или гипофиза

  • МРТ сосудов головного мозга ангиопрограмма артериальная

  • МРТ сосудов головного мозга ангиопрограмма венозная

  • МРТ- миелограмма

  • МРТ спинного мозга и позвоночника: шейного отдела позвоночника

  • МРТ сосудов шеи (экстракраниальная артериальная или венозная программа)

  • МРТ спинного мозга и позвоночника: грудного отдела

  • МРТ спинного мозга и позвоночника: пояснично-крестцового отдела

  • МРТ надпочечников

  • МРТ одного сустава, МРТ локтевого сустава, МРТ коленного сустава

  • МРТ головного мозга или спинного мозга(включая краниовертебральный переход) с наркозом

  • МРТ брюшной полости

  • МРТ органов малого таза
^

Противопоказания к магнитно - резонансной томографии (МРТ)


Абсолютные противопоказания к магнитно-резонансной томографии (МРТ):

  • Металлическое инородное тело в глазнице,

  • Внутричерепные аневризмы, клипированные ферромагнитным материалом,

  • Наличие в теле электронных приспособлений (кардиостимулятор, например),

  • Гемопоэтическая анемия (при контрастировании)

Относительные противопоказания к магнитно-резонансной томографии (МРТ):

  • тяжелая клаустрофобия или неадекватное поведение,

  • беременность (относительным противопоказанием МРТ является беременность до 12 недель, поскольку на данный момент собрано недостаточное количество доказательств отсутствия тератогенного эффекта магнитного поля),

  • внутричерепные аневризмы, клипированные неферромагнитным материалом,

  • металлические протезы, клипсы или осколки в не сканируемых органах,

  • невозможность сохранять подвижность в следствие сильной боли,

  • татуировки с содержанием металлических соединений,

  • необходимость постоянного контроля жизненно-важных показателей*,

  • Состояние алкогольного или наркотического опьянения
^

Как проводится магнитно-резонансная томография (МРТ)


Процедура магнитно-резонансной томографии (МРТ) безболезненна и не требует специальной подготовки к исследованию, за исключением обследования органов малого таза. Перед исследованием МРТ следует продолжить прием лекарств (если они вам назначены), рекомендуется умеренный прием пищи. Вам предложати халат или можно свои вещи без металлических молний. Обязательно попросят снять все аксессуары - часы, драгоценности, ювелирные изделия, шпильки, заколки. Также снимите парик, зубной протез, слуховой аппарат. Очень важно перед МРТ снять с себя предметы, содержащие металл. Металлические предметы могут нарушить действие магнитного поля, которое используется во время обследования , и качество снимков может оказаться плохим. Кроме того, магнитное поле может повредить электронику.

Обязательно необходимо сообщить врачу, если у вас в теле металлический суставной протез, искусственный сердечный клапан, привитые электронные приборы, электронные импланты среднего уха или импланты в зубном ряду.

Присутствие металла в вашем теле может быть рискованным для вас, или подействовать на часть МРТ снимка.

Методика магнитно-резонансной томографии (МРТ-исследования) заключается в помещении пациента в горизонтальном положении в узкий тоннель томографа, время зависит от вида исследования. Пациент должен сохранять полную неподвижность исследуемой анатомической области.

mrt2.jpg


Некоторые МРТ снимки получают путем введения контрастного раствора через вену в вашей руке. Во время исследования дышите спокойно, не шевелитесь, вы можете разговаривать с врачом МРТ через микрофон.

Скоростные магнитно-резонансные томографы (МРТ машины) короче и шире, поэтому большая часть вашего тела находится в открытом состоянии в процессе сканирования. Более новые МРТ машины открыты со всех сторон, это может ослаблять качество снимка, но такое оборудование широко используется для пациентов с клаустрофобией и детей.

Для повышения диагностической эффективности магнитно-резонансной томографии (МРТ-исследований) пациентам рекомендуется приносить с собой данные предыдущих МРТ исследований, других методов лучевой, лабораторной или функциональной диагностики, а так же амбулаторные карты или направления от лечащих врачей с указанием области и цели исследования.

Процедура магнитно-резонансной томографии (МРТ) безболезненная. Само оборудование для МРТ во время работы воспроизводит не громкий шум, который может вызвать неприятное ощущение.

Личные вещи, украшения и ценности, одежда, содержащая металл и электромагнитные устройства не допускаются в комнату МРТ сканирования.

Магнито-резонансная томография, как любое исследование, обладает определёнными диагностическими пределами, а так же возможной ограниченной чувствительностью и специфичностью в диагностике патологических процессов. В связи с этим, а так же при наличии сомнений в целесообразности проведения исследования рекомендуется проконсультироваться с лечащим врачом или врачом магнитно-резонансной томографии (МРТ).
^

Безопасность метода МРТ


На данный момент неизвестно о каких-либо опасностях или побочных эффектах, связанных с магнитно-резонансной томографией (МРТ). В магнитно-резонансной томографии не используется ионизирующая радиация (рентгеновские лучи), ее можно проводить повторно. Теоретически существует небольшой риск для плода в первые 12 недель беременности,

поэтому в течении этого периода сканирование беременным женщинам противопоказано. Поскольку во время проведения магнитно-резонансной томографии пациенты должны лежать внутри большого цилиндра, у некоторых из них могут проявиться симптомы клаустрофобии. Пациенты, испытывающие страх перед закрытым пространством, должны предупредить об этом врача, в этом случае можно пригласить на процедуру магнитно-резонансной томографии (МРТ) близкого родственника.

Магнитно-резонансная томография (МРТ) продолжает совершенствоваться, расширяется область ее применения:
^

Используемая литература


  • Хорнак Дж. П. Основы МРТ (1996—1999);

  • Мэнсфилд П. Быстрая магнитно-резонансная томография;

  • Журнал Популярная механика;

  • Абрагам А. Ядерный магнетизм;

  • Сликтер Ч. Основы теории магнитного резонанса;

  • Эрнст Р., Боденхаузен Дж., Вокаун А. ЯМР в одном и двух измерениях;

  • Гюнтер Х. Введение в курс спектроскопии ЯМР;

  • Дероум А. Современные методы ЯМР для химических исследований;

  • Чижик В. И. Квантовая радиофизика. Магнитный резонанс и его приложения;

  • Калабин Природная спектроскопия ЯМР природного органического сырья;

  • Фано У., Фано Л. Физика атомов и молекул. Пер. с англ. / Под ред. Л.И. Пономарева. – М.: Наука, 1980;

  • Физика микромира. Маленькая энциклопедия. [Гл. ред. Д.В. Ширков]. – М.: «Сов. энциклопедия», 1980;

  • Эткин В.А. О специфике спин-спиновых взаимодействий. НиТ, 2002;

  • Поисковые системы интернета: www.yandex.ru; google.com.

Добавить документ в свой блог или на сайт
Ваша оценка этого документа будет первой.
Ваша оценка:

Похожие:

Ядерный Университет «мифи» iconПрограмма аттестационного собеседования для поступающих в иатэ нияу мифи по направлению подготовки : 060101 Лечебное дело на 2-ой и последующие курсы (перевод)

Ядерный Университет «мифи» icon«Волгоградский государственный медицинский университет»
Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Волгоградский государственный...

Ядерный Университет «мифи» iconЭффект Мёссбауэра или ядерный гамма-резонанс, открытый в 1957 или
Институте им. М. Планка в Гейдельберге (фрг), состоит в резонансном испускании или поглощении гамма-фотонов без изменения фононного...

Ядерный Университет «мифи» icon«Северо-Западный государственный медицинский университет им. И. И. Мечникова»
Работа выполнена в гбоу впо «Северо-Западный государственный медицинский университет им. И. И. Мечникова» Министерства здравоохранения...

Ядерный Университет «мифи» iconВ. С. Васильев профессор кафедры инфекционных болезней с курсом детских инфекций Учреждения образования «Гродненский государственный медицинский университет», доктор медицинских наук, профессор
И. А. Новикова, заведующая кафедрой клинической лабораторной диагностики Учреждения образования «Гомельский государственный медицинский...

Ядерный Университет «мифи» iconУниверситет российской академии образования

Ядерный Университет «мифи» iconН. Ф. Сорока Белорусский государственный медицинский университет

Ядерный Университет «мифи» iconКыргызско-Турецкий Университет им. Манаса, программа курса

Ядерный Университет «мифи» iconА. М. Белавин Пермский государственный педагогический университет, Пермь

Ядерный Университет «мифи» iconА. А. Стрельцов Российский Государственный университет физической культуры

Разместите кнопку на своём сайте:
Учеба


При копировании материала обязательно указание активной ссылки открытой для индексации. ©ucheba 2000-2013
обратиться к администрации | правообладателям | пользователям
Медицина